Главная >  Ортодинамические и изодинамические стереотелефоны 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 [ 79 ] 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

ной формы, в частности кардиоиды, суперкардиоиды, гиперкардиоиды. Лабиринт является многозвенным акустическим фильтром. Его электрическим аналогом является фильтр, состоящий из нескольких звеньев последовательно соединенных индуктивностей с активным сопротивлением и параллельно вклк>-чениых емкостей.

Конструкция ленточных микрофонов значительно проще катушечных, но по надежности оии уступают последним из-за иедостаточиой механической прочности ленточки, поэтому они реже используются, чем катушечные.

Следующим вариантом электродинамических микрофонов являются так называемые ортодинамические или изодинамичёсте. В отечественной бытовой технике они еще не нашли применения. В микрофонной мировой технике рекламируются такие конструкции, \

Рис. 4.6. Схематический поперечный разрез электроакустического преобразователя ортодинамичес-кого микрофона:

I - магввтиая система; 2 - подвиж-ваи система

Схематический поперечный. разрез капсюля ортодинамнческого микрофона представлен иа рис. 4.6, где / - магнитная система, состоящая из двух одинаковых перфорированных магнитов с расположением полюсов, как показано на этом рисунке. Между магнитами размещается подвижная система 2, представляющая собой пленку, на которой фотолитографическим методом изготовлена плоская катушка спиралевидной формы. Витки плоской катушки находятся в поле рассеяния магнитной системы, поэтому чувствительность такого микрофона значительно меньше, чем ленточного и катушечного, Изодинамический преобразователь отличается от ортодииамического только конфигурацией мембраны, звуковой катушки я магнитов.

С начала 70-х годов стали широко применяться конденсаторные электрет-ные микрофоны. Эти микрофоны по удобству эксплуатации незначительно уступают электродинамическим катушечным, так как хотя они и требуют предварительного усилителя и источника питания, ио оба эти элемента встроены в корпус микрофона, а источник питания может работать непрерывно, без замены, длительное время - порядка года.

Схематический поперечный разрез капсюля конденсаторного электретного микрофона показан на рис. 4.7. Капсюль микрофона представляет собой плоский конденсатор с воздушным зазором, одной из обкладок которого является тонкая эластичная мембрана 1, второй обкладкой - неподвижный электрод (НЭ) .2. В качестве мембраны используется диэлектрическая фторполимерная пленка Ф4МБ-2, поляризованная и металлизированная с одной стороны. Пленка в натянутом состоянии приклеена металлизированной стороной к металлическому кольцу 3, Мембрана является электретом, так как способна длительное время сохранять величину заряда, нанесенного на неё во время поляризации, причем наиболее стабильным для пленки ,Ф4МБ-2 является отрицательный заряд. Неподвижный электрод изготавливается из изоляционного материала с большим объемным и поверхностным сопротивлением и малым коэффициентом линейного расширения. Со стороны мембраны НЭ металлизируется, я втот не> таллический слой и металлический слой на мембране являются обкладками конденсатора, У большинства отечественных электретиых микрофонов НЭ изготавливаются из композиционного материала. В середине НЭ, изготовленного из композиционного материала, спрессована металлическая втулка 4 с внутренней резьбой. Втулка служит для осуществления контакта с металлическим слоем на НЭ и для крепления с помощью винта контактного лепестка или еще каких-либо деталей, если они входят в акустическую систему микрофона. Большинство конструкций НЭ отечественных электретных микрофонов со стороны мембраны имеют углубления 5, служащие для увеличения гибкости воздуш-




иого зазора между мембраной и НЭ, образованного изоляционным- кольцом 6. Электретная мембрана создает в воздушном зазоре меду мембраной и НЭ электрическое поле, напряженность которого прямо пропорциональна напряженности поля между поверхностями электрета и обратно пропорциональна высоте воздушного зазора.

-бинд

Рис. 4.7. Схематический поперечный разрез электроакустнче-; ского преобразователя конденсаторного электронного микрофона:

/ - мембрана; 2 - неподвижный электрод; 3- кольцо; 4 - втулка; 5 - углубление в НЭ; 6 - взоляционное кольцо; 7 - отверстия; 8 - шайба; 9 -щель: /О -отг верстая в дне НЭ


Рис. 4.8. Схема распределения заряда в капсюле электронного микрофона:

-о и -Ю -заряды иа поверхности электретной пленки: - янд и +инд - заряды в металлических слоях электретной пленки й НЭ соответст-. венно; £ - напряженность электрического поля поляризации

Схема распределения заридов в капсюле показана на .рис. 4.8. Под действием электрического поля .мембрана прогибается. Для устойчивой работы микрофона прогиб мембраны должен быть не более 0,2 высоты воздушного зазора (расстояние между мембраной и неподвижным электродом). Отсюда ясно, что напряженность поля мембраны не должна превышать допустимого предела. Емкость современных коидеисаторных микрофонов в зависимости от их размеров находится в пределах от нескольких микрофарад до десятков микрофарад. Следовательно, внутреннее сопротивление капсюля микрофона на нижней частоте номинального диапазона 30 Гц лежит в пределах 100 ... 400 МОм, что значительно больше, чем входное сопротивление микрофонного усилителя бытовой радиоэлектронной аппаратуры.

Согласование высокого выходного сопротивления капсюля с низким входным сопротивлением микрофонных усилителей выполняет предварительный усилитель микрофона, имеющий коэффициент усиления, обычно меньше 1,0. Предварительный усилитель конденсаторных электретных микрофонов для бытовой техники, как правило, представляет собой микросхему на полевом транзисторе. Для питания предварительного усилителя служит батарея питания, встраиваемая в корпус микрофона. Если же микрофон встраивается в магнитофон или магнитолу, то напряжение питания подводится к предварительному усилителю от источников питания этих аппаратов. В зависимости от конструкции и параметров акустической системы конденсаторные электретные микрофоны могут иметь различные ЧХН. Если микрофби имеет один акустический вход и звуковое давление действует только на переднюю сторону мембраны, то такой микрофон будет иметь ЧХН в виде круга.

Боковые стенки корпуса направленного конденсаторного электретного микрофона имеют прорези для обеспечения свободного доступа звукового давления к задней стороне мембраны, которую звуковая волна достигает, пройдя чмез прорези, отверстия 7 в шайбе S, щель 9 между НЭ и шайбой, отверстия 10 в дне НЭ, углубления в НЭ и воздушный зазор. Таким образом, в таком



капсюле обеспечено наличие двух акустических входов, расположенных друг от друга на расстояиии d. Звуковая волиа, пройдя это расстояние, получает сдвиг фазы

(p = <i>d/co, . l

где (О - круговая частота; Со - скорость звука.

В. зависимости от соотношения внешнего и внутреннего сдвига фазы, который звуковая волна получает на фазосдвигающей цепи акустической системы капсюля, образованной перечисленными выше конструктивными элементами, капсюль микрофона будет иметь различные тенденции ЧХЧ и формы ЧХН. Капсюль крепится либо к основанию переднего, либо к основанию заднегр корпуса, в котором размещается предварительный усилитель, батарея питания выходной трансформатор и детали крепления выходного кабеля. Если капсюль используется для микрофона ближнего действия ( ручного микрофона), то он крепится к основанию через амортизационную прокладку, чтобы уменьшить воздействие вибраций на мембрану микрофона. В этом случае капсюль заключается во второй корпус, изготовленный, как правило, из нескольких слоев сеток, которые отчасти предохраняют мембрану микрофона от воздействия ветровых потоков. Основной защитой от ветровых потоков служит колпачок, одеваемый на корпус капсюля, изготовленный из пористого пенополиуретана, или нескольких слоев сеток, между которыми закреплен либо тонкий слой пористого пенополиуретана, либо слой ткани.

В последнее время все чаще рекламируются конденсаторные электретные микрофоны, у которых электретом служит электретная пленка, присоединенная к НЭ, а мембраной - тонкая - полиэтилентерефталатная пленка. Такая конструкция электретного микрофона, имеет ряд существенных преимуществ перед микрофоном с электретной мембраной. Эти преимущества заключаются в уменьшении массы мембраны примерно в 3-3,5 раза, а следовательно, и вибровосприимчивости микрофона. Кроме того, уменьшается зависимость чувствительности микрофона от изменения температуры окружающей среды. Все эти преимущества обусловлены тем, что пленка полиэтилентерефталатная (терелено-вая) имеет примерно в 1,7 раза меньший удельный вес по сравнению с фтор-полимерной пленкой, одинаковые механические свойства во всех направлениях, в то время как у фторополимерной пленки они отличаются примерно в 2 раза во взаимноперпенднкуляриых направлениях. Механическая прочность полиэти-лентерефталатной пленки примерно в 5 раз больше, чем у фторполимерной. Совокупность этих свойств полиэтилентерефталатной пленки позволяет применять мембрану в 2 раза меньшей толщины и тем самым получить равномерную частотную характеристику чувствительности до более высоких частот, т. е. параметры, равноценные параметрам высококачественных конденсаторных микрофонов с внешним источником напряжения поляризации, предназначенным для профессиональных целей. Микрофоны с электретным слоем на НЭ принято у нас называть конденсаторными микрофонами с массивным электретом (МЭ). Характерным для большинства этих микрофонов является то, что МЭ изготавливаются на металлической перфорированной подложке. В качестве подложки для МЭ можно применять и изоляционный материал с последующей металлизацией со стороны присоединения к нему электретиой пленки.

Известны микрофоны, предварительный усилитель которых представляет собою бескорпусную интегральную схему, закрепленную на подложке МЭ. Такая конструкция предварительного усилителя используется для миниатюрных конденсаторных микрофонов, встраиваемых в бытовую радиоэлектронную аппаратуру.

4.2. Основные характеристики. Методы измерений

Требования к электроакустическим параметрам микрофонов, методам и условиям измерения нх параметров изложены в отечественных стандартах и международных документах: ГОСТ 6495-88 [4.1], ГОСТ 161,23-88 [4.2], МЭК 268 часть 4 [4.3], МЭК 268 часть 15 [4.4], МЭК 581 часть 5 [4.5], DIN 45500 часть 5 [4.6].



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 [ 79 ] 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106